University Core Requirements:

Religion Cornerstones
- Teachings and Doctrine of The Book of Mormon
 - REL A 275
 - 1 Class, 2.0 Hours
- Jesus Christ and the Everlasting Gospel
 - REL A 250
 - 1 Class, 2.0 Hours
- Foundations of the Restoration
 - REL C 225
 - 1 Class, 2.0 Hours
- The Eternal Family
 - REL C 200
 - 1 Class, 2.0 Hours

The Individual and Society
- American Heritage
 - 1-2 Classes, 3-6.0 Hours, from approved list
- Global and Cultural Awareness
 - 1 Class, 3.0 Hours, from approved list

Skills
- First Year Writing
 - 1 Class, 3.0 Hours, from approved list
- Advanced Written and Oral Communications
 - 1 Class, 3.0 Hours, PHSCS 416 or ENGL 316
- Quantitative Reasoning
 - 1 Class, 4.0 Hours, MATH 112*
- Languages of Learning (Math or Language)
 - 1 Class, 4.0 Hours, MATH 112*

Arts, Letters, and Sciences
- Civilization 1
 - 1 Class, 3.0 Hours, from approved list
- Civilization 2
 - 1 Class, 3.0 Hours, from approved list
- Arts
 - 1 Class, 3.0 Hours, from approved list
- Letters
 - 1 Class, 3.0 Hours, from approved list
- Biological Science
 - 1 Class, 3-4.0 Hours, from approved list
- Physical Science
 - 1 Class, 3.0 Hours, PHSCS 222*
- Social Science
 - 1 Class, 3.0 Hours, from approved list

Core Enrichment: Electives
- Religion Electives
 - 3-4 Classes, 6.0 Hours, from approved list
- Open Electives
 - Variable Hours, personal choice

*These classes fill both University Core and Program Requirements (7 hours overlap)

Graduation Requirements:
- Minimum residence hours required: 30.0
- Minimum hours needed to graduate: 120.0

Suggested Sequence of Courses

FRESHMAN YEAR
1st Semester
- First-year Writing
 - 3.0 Hours
- MATH 112
 - 4.0 Hours
- PHSCS 121
 - 3.0 Hours, PHSCS 318
- PHSCS 191
 - 0.5 Hours, PHSCS 321
- Religion Cornerstone course
 - 2.0 Hours, MATH 303
- General Electives
 - 2.0 Hours, Religion elective
- Total Hours: 14.5

2nd Semester
- American Heritage
 - 3.0 Hours
- MATH 113
 - 4.0 Hours, Applied Physics Elective 1
- PHSCS 123
 - 3.0 Hours, Applied Physics Elective 2
- PHSCS 140
 - 1.0 Hours, Arts
- Religion Cornerstone course
 - 2.0 Hours, Religion elective
- C S 142
 - 3.0 Hours, General Elective
- Total Hours: 16.0

SOPHOMORE YEAR
3rd Semester
- PHSCS 145
 - 1.0 Hours, PHSCS 441
- PHSCS 220
 - 3.0 Hours, PHSCS 492R or PHSCS 498R
- PHSCS 230
 - 1.0 Hours, Applied Physics Elective 3
- PHSCS 291
 - 0.5 Hours, Civilization 1
- Biological Science
 - 3.0 Hours, Letters
- Religion Cornerstone course
 - 2.0 Hours, Religion elective
- General Elective
 - 2.0 Hours
- Social Science
 - 3.0 Hours
- Total Hours: 15.5

4th Semester
- PHSCS 240
 - 4.0 Hours, PHSCS 416
- PHSCS 222
 - 3.0 Hours, PHSCS 442 or PHSCS 471 or EC EN 466
- PHSC 240
 - 2.0 Hours, Civilization 2
- Religion Cornerstone course
 - 2.0 Hours, Global & Cultural Awareness
- General Elective
 - 3.0 Hours
- Total Hours: 14.0

Note: Students are encouraged to complete an average of 15 credit hours each semester or 30 credit hours each year, which could include spring and/or summer terms. Taking fewer credits substantially increases the cost and the number of semesters to graduate.
NAME

No more than 3 hours of D credit is allowed in major courses.

Consult with a faculty advisor as early as possible to choose electives.

REQUIREMENT 1 Complete 16 courses

NOTE: PHSCS 191 SHOULD BE TAKEN THE FIRST SEMESTER AS A FRESHMAN. PHSCS 291 SHOULD BE TAKEN THE FIRST SEMESTER AS A SOPHOMORE.

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>C S 142 - Introduction to Computer Programming</td>
<td>3.0</td>
</tr>
<tr>
<td>MATH 113 - Calculus 2</td>
<td>4.0</td>
</tr>
<tr>
<td>PHSCS 121 - Introduction to Newtonian Mechanics</td>
<td>3.0</td>
</tr>
<tr>
<td>PHSCS 123 - Introduction to Waves, Optics, and Thermodynamics</td>
<td>3.0</td>
</tr>
<tr>
<td>PHSCS 191 - Introduction to Physics Careers and Research 1</td>
<td>0.5</td>
</tr>
<tr>
<td>PHSCS 220 - Introduction to Electricity and Magnetism</td>
<td>3.0</td>
</tr>
<tr>
<td>*PHSCS 222 - Modern Physics</td>
<td>3.0</td>
</tr>
<tr>
<td>PHSCS 230 - Computational Physics Lab 1</td>
<td>1.0</td>
</tr>
<tr>
<td>PHSCS 240 - Design, Fabrication, and Use of Scientific Apparatus</td>
<td>2.0</td>
</tr>
<tr>
<td>PHSCS 245 - Experiments in Contemporary Physics</td>
<td>2.0</td>
</tr>
<tr>
<td>PHSCS 291 - Introduction to Physics Careers and Research 2</td>
<td>0.5</td>
</tr>
<tr>
<td>PHSCS 318 - Introduction to Mathematical Physics</td>
<td>3.0</td>
</tr>
<tr>
<td>PHSCS 321 - Mechanics</td>
<td>3.0</td>
</tr>
<tr>
<td>PHSCS 330 - Computational Physics Lab 2</td>
<td>1.0</td>
</tr>
<tr>
<td>PHSCS 430 - Computational Physics Lab 3</td>
<td>1.0</td>
</tr>
<tr>
<td>PHSCS 441 - Electrostatics and Magnetism</td>
<td>3.0</td>
</tr>
</tbody>
</table>

REQUIREMENT 2 Complete 1 option

OPTION 2.1 Complete 2 courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHSCS 140 - Electronics Lab</td>
<td>1.0</td>
</tr>
<tr>
<td>PHSCS 145 - Experimental Methods in Physics</td>
<td>1.0</td>
</tr>
</tbody>
</table>

OPTION 2.2 Complete 1 course

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHSCS 225 - (Not currently offered)</td>
<td></td>
</tr>
</tbody>
</table>

REQUIREMENT 3 Complete 1 course

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC EN 466 - Introduction to Optical Engineering</td>
<td>2.0</td>
</tr>
<tr>
<td>PHSCS 442 - Electrodynamics</td>
<td>3.0</td>
</tr>
<tr>
<td>PHCS 471 - Principles of Optics</td>
<td>3.0</td>
</tr>
</tbody>
</table>

REQUIREMENT 4

After gaining department advisor’s approval of courses selected to define an option, complete an additional 12 hours of electives (cannot include any courses already taken above). These 12 hours must consist of a coherent set of upper-division courses with an identified educational goal. Nine hours must be upper division (300-level or above); three hours must be 200-level or above.

REQUIREMENT 5 Complete 1 option

OPTION 5.1 Complete 2 courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 302 - Mathematics for Engineering 1</td>
<td>3.0</td>
</tr>
<tr>
<td>MATH 303 - Mathematics for Engineering 2</td>
<td>3.0</td>
</tr>
</tbody>
</table>

OPTION 5.2 Complete 3 courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 313 - Elementary Linear Algebra</td>
<td>3.0</td>
</tr>
<tr>
<td>MATH 314 - Calculus of Several Variables</td>
<td>3.0</td>
</tr>
<tr>
<td>MATH 334 - Ordinary Differential Equations</td>
<td>3.0</td>
</tr>
</tbody>
</table>

REQUIREMENT 6 Complete 2.0 hours from the following option(s)

COMPLETE A CAPSTONE PROJECT OR SENIOR THESIS INCLUDING THE FOLLOWING:

- **A.** Choose a research mentor and group as early as possible, starting with information in Phscs 191 and 291, and discussions with faculty, your advisor, and the capstone project coordinator or senior thesis coordinator. It is best to start as a freshman or sophomore. Interdisciplinary work in other departments or in internships is possible.

OPTION 6.1 Complete 2.0 hours from the following course(s)

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHSCS 492R - Capstone Project in Applied Physics</td>
<td>2.0</td>
</tr>
<tr>
<td>You may take up to 2 credit hours. Capstone Project in Applied Physics</td>
<td></td>
</tr>
<tr>
<td>PHSCS 498R - Senior Thesis</td>
<td>3.0v</td>
</tr>
<tr>
<td>You may take up to 2 credit hours. Senior Thesis</td>
<td></td>
</tr>
</tbody>
</table>

REQUIREMENT 7

Students are required to take the Physics "Major Field Test" the last semester before they graduate. The test is a standardized assessment of undergraduate physics written by ETS (Educational Testing Service). The ETS website contains a description of the exam and sample problems: http://www.ets.org/mft/about/content/physics. Results of the exam do not appear on the transcript or affect the GPA. Students should contact the Physics undergraduate secretary to make arrangements for taking the exam; typically it’s done in the Testing Center before mid-semester.

Note 1: Students planning careers in experimental, applied, or industrial physics should complete Stat 201.

Note 2: All students will benefit, through courses or individual study, by learning programming skills and numerical methods beyond what you are taught in CS 142 and our computational physics courses. Consider the following: CS courses, Math 410, Me En 373.

CAREER OPPORTUNITIES:

A degree in physics or physics-astronomy can provide: 1. Preparation for those who intend to enter industrial or governmental service as physicists or astronomers. 2. Education for those who intend to pursue graduate work in physics or astronomy. 3. Education in the subject matter of physics for prospective teachers of the physical sciences. 4. Undergraduate education for those who will pursue graduate work in the professions: business (e.g., an MBA), law, medicine, etc. 5. Fundamental background for other physical sciences and engineering, in preparation for graduate study in these fields. 6. Physics fundamentals required by the biological science, medical, dental, nursing, and related programs. For more information, see www.physics.byu.edu/undergraduate/careers.

THE DISCIPLINE:

Over the centuries physicists and astronomers have studied the fundamental principles that govern the structure and dynamics of matter and energy in the physical world, from subatomic particles to the cosmos. Physicists also apply this understanding to the development of new technologies. For example, physicists invented the first lasers and semiconductor electronic devices. Physics and astronomy students learn to approach complex problems in science and technology from a broad background in mechanics, electricity and magnetism, statistical and thermal physics, quantum mechanics, relativity, and optics. The tools students develop at BYU include problem solving by mathematical and computational modeling, as well as experimental discovery and analysis. All students gain professional experience in a research, capstone, or internship project, usually in close association with faculty. Together these experiences can provide excellent preparation for employment or for graduate studies in physics, other sciences, engineering, medicine, law, or business. Most physicists and astronomers work in research and development in industrial, government, or university labs to solve new problems in technology and science. They also share the beauty discovered in our physical universe by teaching in high schools, colleges, and universities.

MAP DISCLAIMER

While every reasonable effort is made to ensure accuracy, there are some student populations that could have exceptions to listed requirements. Please refer to the university catalog and your college advisement center/department for complete guidelines.

DEPARTMENT INFORMATION

FACULTY ADVISORS ASSIGNED BY LAST TWO DIGITS OF BYU ID
BS in Applied Physics (694825)
2018-2019

Department of Physics and Astronomy
Brigham Young University
N-283 ESC
Provo, UT 84602
Telephone: (801) 422-4361

ADVIEMENT CENTER INFORMATION

Physical and Mathematical Sciences College Advisement Center
Brigham Young University
N-181 ESC
Provo, UT 84602
Telephone: (801) 422-2674