University Core and Graduation Requirements

University Core Requirements:

<table>
<thead>
<tr>
<th>Requirements</th>
<th>#Classes</th>
<th>Hours</th>
<th>Classes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Religion Cornerstones</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teachings and Doctrine</td>
<td>1</td>
<td>2.0</td>
<td>REL A 275</td>
</tr>
<tr>
<td>Jesus Christ and the Everlasting Gospel</td>
<td>1</td>
<td>2.0</td>
<td>REL A 250</td>
</tr>
<tr>
<td>Foundations of the Restoration</td>
<td>1</td>
<td>2.0</td>
<td>REL C 225</td>
</tr>
<tr>
<td>The Eternal Family</td>
<td>1</td>
<td>2.0</td>
<td>REL C 200</td>
</tr>
<tr>
<td>The Individual and Society</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>American Heritage</td>
<td>1-2</td>
<td>3-6.0</td>
<td>from approved list</td>
</tr>
<tr>
<td>Global and Cultural Awareness</td>
<td>1</td>
<td>3.0</td>
<td>from approved list</td>
</tr>
<tr>
<td>Skills</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First Year Writing</td>
<td>1</td>
<td>3.0</td>
<td>from approved list</td>
</tr>
<tr>
<td>Advanced Written and Oral Communications</td>
<td>1</td>
<td>3.0</td>
<td>CHEM 391*</td>
</tr>
<tr>
<td>Quantitative Reasoning</td>
<td>1</td>
<td>4.0</td>
<td>MATH 112* or 113*</td>
</tr>
<tr>
<td>Languages of Learning (Math or Language)</td>
<td>1</td>
<td>4.0</td>
<td>MATH 112* or 113*</td>
</tr>
<tr>
<td>Arts, Letters, and Sciences</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Civilization 1</td>
<td>1</td>
<td>3.0</td>
<td>from approved list</td>
</tr>
<tr>
<td>Civilization 2</td>
<td>1</td>
<td>3.0</td>
<td>from approved list</td>
</tr>
<tr>
<td>Arts</td>
<td>1</td>
<td>3.0</td>
<td>from approved list</td>
</tr>
<tr>
<td>Letras</td>
<td>1</td>
<td>3.0</td>
<td>from approved list</td>
</tr>
<tr>
<td>Biological Science</td>
<td>1</td>
<td>3-4.0</td>
<td>from approved list</td>
</tr>
<tr>
<td>Physical Science</td>
<td>2</td>
<td>7.0</td>
<td>CHEM 111* and PHSCS 121*</td>
</tr>
<tr>
<td>Social Science</td>
<td>1</td>
<td>3.0</td>
<td>from approved list</td>
</tr>
<tr>
<td>Core Enrichment: Electives</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Religion Electives</td>
<td>3-4</td>
<td>6.0</td>
<td>from approved list</td>
</tr>
<tr>
<td>Open Electives</td>
<td>Variable</td>
<td>Variable</td>
<td>personal choice</td>
</tr>
</tbody>
</table>

*These classes fill both University Core and Program Requirements (14 hours overlap)

Graduation Requirements:

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum residence hours required</td>
<td>30.0</td>
</tr>
<tr>
<td>Minimum hours needed to graduate</td>
<td>120.0</td>
</tr>
</tbody>
</table>

Suggested Sequence of Courses

FRESHMAN YEAR

<table>
<thead>
<tr>
<th>Semester</th>
<th>Total Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>16.0</td>
</tr>
</tbody>
</table>

*With department approval, CHEM 105 may be substituted for CHEM 111.

JUNIOR YEAR

<table>
<thead>
<tr>
<th>Semester</th>
<th>Total Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>5th</td>
<td>15.0</td>
</tr>
</tbody>
</table>

481 can be substituted for 481M.

SOPHOMORE YEAR

<table>
<thead>
<tr>
<th>Semester</th>
<th>Total Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>3rd</td>
<td>15-16.0</td>
</tr>
</tbody>
</table>

351 may substitute for 351M.

SENIOR YEAR

<table>
<thead>
<tr>
<th>Semester</th>
<th>Total Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>7th</td>
<td>16-17.0</td>
</tr>
</tbody>
</table>

Note:

Enrolling in CHEM 497R gives students an opportunity to be mentored in a faculty’s research lab and receive class credit. Enrollment in this course can be repeated for several successive semesters. Permission is required from the faculty member. Contact the department office for specific details and to receive a permission-to-add code.

Students are encouraged to complete an average of 15 credit hours each semester or 30 credit hours each year, which could include spring and/or summer terms. Taking fewer credits substantially increases the cost and the number of semesters to graduate.
The Chemistry and Biochemistry Department requires the final 10 hours of required credit to be taken in residence at BYU for this degree program. These hours may also go toward BYU’s 30-hour residency requirement for graduation.

REQUIREMENT 1 Complete 10 courses
- CHEM 111 - Principles of Chemistry 1
- CHEM 112 - Principles of Chemistry 2
- CHEM 113 - Introductory General Chemistry Laboratory
- CHEM 201 - Chemical Handling and Safe Laboratory Practices
- CHEM 227 - Principles of Chemical Analysis
- CHEM 351M - Organic Chemistry 1 - Majors
- CHEM 352M - Organic Chemistry 2 - Majors
- CHEM 354 - Organic Chemistry Laboratory-Majors
- *CHEM 391 - Technical Writing Using Chemical Literature
- CHEM 495 - Undergraduate Special Problems

Note: With departmental approval, Chem 105 may substitute for Chem 111, and Chem 106 for Chem 112.

REQUIREMENT 2 Complete 1 option

OPTION 2.1 Complete 4 courses
- CHEM 468 - Biophysical Chemistry
- CHEM 481M - Biochemistry-Majors
- CHEM 584 - Advanced Biochemistry Methods 1
- STAT 201 - Statistics for Engineers and Scientists

OPTION 2.2 Complete 5 courses
- CHEM 462 - Physical Chemistry 1
- CHEM 463 - Physical Chemistry 2
- CHEM 464 - Physical Chemistry Laboratory 1
- CHEM 465 - Physical Chemistry Laboratory 2
- MATH 302 - Mathematics for Engineering 1

REQUIREMENT 3 Complete 5 courses
- MATH 112 - Calculus 1
- MATH 113 - Calculus 2
- PHYS 121 - Introduction to Newtonian Mechanics
- PHYS 122 - Introduction to Waves, Optics, and Thermodynamics
- PHYS 220 - Introduction to Electricity and Magnetism

REQUIREMENT 4 Complete 3.0 hours from the following option(s)
- After consulting with an advisor, complete 3 hours from the following:
 - CHEM 397R - Mentored Outreach and Service Learning

OPTION 4.1 Complete 3.0 hours from the following course(s)
- CHEM 495 - Undergraduate Special Problems
- CHEM 514 - Inorganic Chemistry
- CHEM 518 - Advanced Inorganic Laboratory
- CHEM 521 - Instrumental Analysis Lecture
- CHEM 523 - Instrumental Analysis Laboratory
- CHEM 552 - Advanced Organic Chemistry
- CHEM 553 - Advanced Organic Chemistry
- CHEM 563 - Reaction Kinetics
- CHEM 565 - Introduction to Quantum Chemistry
- CHEM 567 - Statistical Mechanics
- CHEM 569 - Fundamentals of Spectroscopy
- CHEM 581 - Advanced Biochemical Methodology 1
- CHEM 583 - Advanced Biochemical Methodology 2
- CHEM 594R - General Seminar
- CHEM 596R - Special Topics in Chemistry
- CHEM 597R - Honors Thesis
- CHEM 598R - Honors Thesis
- CHEM 599R - Honors Thesis

Note 1: Elective courses must be different from required courses.
Note 2: With prior approval, certain 300-level and above courses in biology, engineering, physics, and statistics may be taken to satisfy this requirement.

Recommended Courses: Chem 195; Math 302, 303; PDBio 120; Phscs 140, 145.

Note: Supporting courses suggested by most medical and dental schools are found by visiting the Preprofessional Advisement Office. The more rigorous chemistry, mathematics, and physics courses required for the chemistry majors will satisfy the minimum requirements listed there. Elective courses in biochemistry and in biological science are especially pertinent to these preprofessional programs.

PLANNING REGISTRATION

The department recommends a review of progress and planned registration with a faculty advisor by the end of the first week of classes in the first semester or term at BYU and in the semester when 30, 60, and 90 hours are completed. Call 801-422-6269 or come to C104 BNSN to schedule an appointment. New incoming students should attend the chemistry and biochemistry session during New Student Orientation, where they can meet with a faculty advisor and review their planned registration.

THE DISCIPLINE

The Chemistry Bachelor of Arts degree provides preparation for individuals in preprofessional programs (e.g., medicine, dentistry, business administration, or law). It also provides background for careers in chemistry-related professions (e.g., information specialist, safety engineer, forensics). Chemists and biochemists study the fundamental processes that govern the natural world, including atomic structure and how atoms interact to form molecules and materials. They study the mechanisms of chemical processes, including those that underpin living systems such as the transfer of information from DNA to RNA to proteins. They work to develop simplifying models (theories) that permit the correlation and explanation of observations about the behavior of life to the structure of rocks and minerals.

Chemistry and biochemistry provide an essential foundation for the medical sciences, engineering (especially chemical engineering), electronics, energy, environmental sciences, materials science, pharmacy, and virtually all manufacturing processes.

Chemistry and biochemistry are active branches of science that are vital to human existence. Inasmuch as the field embraces all aspects of the material world, it is subdivided into five areas of interest. Examples of these diverse areas include the regulation of protein synthesis, cellular signal transduction at the molecular level and proteomics (biochemistry), design and synthesis of medicinal
compounds, catalysts and polymers (organic chemistry),
design and synthesis of new molecular structures and materials
(inorganic chemistry), spectroscopic study of energy transfer
and molecular structures (physical chemistry), and analysis of
medicinal compounds, biological materials, and contaminants
or trace elements found in the environment (analytical
chemistry).

Chemistry and biochemistry involve far more than test tubes
and beakers. They include sophisticated methodologies such as
recombinant DNA technology, working with a variety of
instruments such as mass spectrometers, calorimeters,
chamotographs, ultracentrifuges, lasers, X-ray diffractometers,
electron microscopes and nuclear magnetic resonance
spectrometers, all of which are used by undergraduate
chemistry and biochemistry students at BYU. Computers also
play an important role in these disciplines, with applications
ranging from simulation of molecules and their interactions to
the collection and analysis of data. The chemistry and
biochemistry curricula are both rigorous and intellectually
rewarding.

CAREER OPPORTUNITIES

Graduates in chemistry and biochemistry obtain positions in
education and many different industries, performing analysis,
synthesis, characterization, observation, and modeling. Those
who work hard, are creative, and have intellectual curiosity are
in particular demand. The discipline also provides an excellent
preprofessional course of study for those interested in
medicine, dentistry, law, and business.

MAP DISCLAIMER

While every reasonable effort is made to ensure accuracy, there
are some student populations that could have exceptions to
listed requirements. Please refer to the university catalog and
your college advisement center/department for complete
guidelines.

DEPARTMENT INFORMATION

Department of Chemistry and Biochemistry
Brigham Young University
C-100 BNSN
Provo, UT 84602
Telephone: (801) 422-6269

ADVISEMENT CENTER INFORMATION

Physical and Mathematical Sciences College Advisement
Center
Brigham Young University
N-181 ESC
Provo, UT 84602
Telephone: (801) 422-2674